SCH4U October 2016

Equilibrium Problems

1. The equilibrium constant for the following gaseous reaction is 0.041.

$$PCl_{5(g)} \longleftrightarrow PCl_{3(g)} + Cl_{2(g)}$$

Calculate the concentrations of all of the substances present at equilibrium if 0.20 mol of PCl_5 are placed in a 4.0 L reaction vessel.

2. The equilibrium constant for the following reaction is 50.0.

$$H_{2(q)} + I_{2(q)} \longleftrightarrow 2HI_{(q)}$$

- a) What will the concentration of HI be at equilibrium when 1.0 mol of $H_{2(g)}$ and 1.0 mol of $I_{2(g)}$ are allowed to reacted in a 1.0 L container?
- b) If the container was an open system and all of the H_2 and I_2 completely reacted so that none remained unreacted, what is the maximum that the concentration of HI could be? HINT: Think grade 11.
- c) What is the percent yield of the equilibrium mixture?
- 3. A 1.0 L container contains 0.75 mol of CO and 0.275 mol of H_2O . After one hour, equilibrium is reached according the following equation:

$$CO_{(g)} + H_2O_{(g)} \leftarrow \rightarrow CO_{2(g)} + H_{2(g)}$$

Analysis shows that 0.25 mol of CO2 is present. What is the equilibrium constant for the reaction?

4. Consider the equilibrium:

$$3I_{2(q)} + 6F_{2(q)} \leftarrow \rightarrow 2IF_{5(q)} + I_4F_{2(q)}$$

- a) At a certain temperature, 3.0 mol of F_2 and 2.0 mol of I_2 are placed into a 10.0 L container. At equilibrium, the concentration of IF_5 is 0.020 mol/L. Calculate K_{eq} for the reaction.
- b) At a different temperature, 6.0 mol of IF₅ and 8.0 mol of I₄F₂ are placed in a 10.0 L container. At equilibrium, 6.0 mol of I₄F₂ are left. Calculate the K_{eq} for the new temperature.
- 5. At a certain temperature, $K_{eq} = 4.0$ for the following reaction.

$$2HF_{(g)} \longleftrightarrow H_{2(g)} + F_{2(g)}$$

Predict the direction in which the reaction will shift, if any, when the following amounts of substances are introduced into a 1.0 L container.

- a) 3.0 mol of HF, 2.0 mol of H_2 and 4.0 mol of F_2
- b) 0.20 mol of HF, 0.50 mol of H_2 and 0.60 mol of F_2
- c) 0.30 mol of HF, 1.8 mol of H_2 and 0.20 mol of F_2

6. The equilibrium constant for the following reaction is 7.0.

$$Br_{2(g)} + Cl_{2(g)} \leftarrow \rightarrow 2BrCl_{(g)}$$

If 0.080 mol of Br_2 and 0.60 mol of Cl_2 are placed into a 2.0 L container, what are the equilibrium concentrations for the reaction?

7. The equilibrium constant is 1.82×10^{-2} for the reaction:

$$2HI_{(q)} \leftarrow \rightarrow H_{2(q)} + I_{2(q)}$$

Equilibrium is reached by adding HI to the reaction vessel.

- a) What are the concentrations of H_2 and I_2 in equilibrium with 0.0100 mol/L HI?
- b) What was the initial concentration of HI (i.e. before equilibrium was reached)?
- c) What percent of HI reacted?

8. 1.00 mol of $CO_{(g)}$ and 1.00 mol $H_2O_{(g)}$ are placed in a 10.0 L container. At equilibrium, 0.665 mol of CO_2 and 0.665 mol of H_2 are present. The reaction proceeds as follows:

$$CO_{(g)} + H_2O_{(g)} \leftarrow \rightarrow CO_{2(g)} + H_{2(g)}$$

- a) What are the equilibrium concentrations of all four gases?
- b) What is the value of Keq?
- 9. The reaction below is exothermic as written.

$$A_{(g)} + B_{(g)} \leftarrow \rightarrow C_{(g)}$$

Assume that equilibrium has already been established. How would the concentration of C change with:

- a) an increase in temperature?
- b) an increase in pressure?
- c) an addition of A?
- d) the addition of a catalyst?
- e) the removal of B?
- f) the removal of C?

How would the value of Keq change with

- q) an addition of A?
- h) an increase in temperature?
- i) an addition of a catalyst?

- 10. For each of the following equilibrium systems:
- a) Write the equilibrium expression
- b) State which direction the reaction would shift to reestablish equilibrium.
 - i) $25O_{2(q)} + O_{2(q)} \leftarrow \rightarrow 25O_{3(q)}$ (exothermic, temperature decrease)
 - ii) $C_{(s)} + CO_{2(q)} \leftarrow \rightarrow 2CO_{(q)}$ (endothermic, increase in temperature)
 - ii) $N_2O_{4(q)} \leftarrow \rightarrow 2NO_{2(q)}$ (increased pressure)
 - iv) $CO_{(g)} + H_2O_{(g)} \leftarrow \rightarrow CO_{2(g)} + H_{2(g)}$ (decrease in pressure)
 - v) $2NOBr_{(q)} \leftarrow \rightarrow 2NO_{(q)} + Br_{2(q)}$ (decrease pressure)
 - vi) $2O_{2(q)} + 3Fe_{(s)} + 4H_{2(q)} \leftarrow Fe_3O_{4(s)} + 4H_{2(q)}$ (add Fe)
 - vii) $25O_{2(g)} + O_{2(g)} \longleftrightarrow 25O_{3(g)}$ (add a catalyst)
 - viii) $CaCO_{3(s)} \leftarrow \rightarrow CaO_{(s)} + CO_{2(g)}$ (remove CO_2)
 - ix) $N_{2(g)} + 3H_{2(g)} \longleftrightarrow 2NH_{3(g)}$ (add $H_{2(g)}$)
- 11. When at equilibrium, a reaction mixture contains: 0.20 mol H_2 , 0.70 mol CO_2 , 0.20 mol CO_2 and 0.30 mol H_2O in a 1.0 L container. The reaction is as follows:

$$CO_{(g)} + H_2O_{(g)} \leftarrow \rightarrow CO_{2(g)} + H_{2(g)}$$

How many moles of CO2 would have to be added to increase the amount of CO to 0.30 mol?